CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>HOW WELL DO YOU KNOW SUGAR</td>
</tr>
<tr>
<td>29</td>
<td>9 MISUNDERSTANDINGS ABOUT SUGAR</td>
</tr>
<tr>
<td>33</td>
<td>SWEETENERS YOU MIGHT FIND IN YOUR FOOD</td>
</tr>
<tr>
<td>35</td>
<td>WHAT ARE ADDED SUGARS?</td>
</tr>
<tr>
<td>36</td>
<td>FACTS ABOUT SUGAR INTAKE</td>
</tr>
<tr>
<td>38</td>
<td>TYPES OF SUGAR</td>
</tr>
<tr>
<td>39</td>
<td>WHERE IN THE U.S. DOES SUGAR COME FROM?</td>
</tr>
<tr>
<td>40</td>
<td>SUGAR BEET PROCESSING</td>
</tr>
<tr>
<td>41</td>
<td>SUGAR CANE REFINING</td>
</tr>
<tr>
<td>42</td>
<td>SUGAR'S ROLE IN FOOD BEYOND SWEETNESS</td>
</tr>
<tr>
<td>43</td>
<td>WHAT IS MOLASSES?</td>
</tr>
<tr>
<td>44</td>
<td>SUGAR REFORMULATION</td>
</tr>
<tr>
<td>48</td>
<td>MAKING SENSE OF ADDED SUGARS ON THE NEW NUTRITION FACTS LABEL</td>
</tr>
<tr>
<td>50</td>
<td>ABOUT THE SUGAR ASSOCIATION</td>
</tr>
</tbody>
</table>
How well do you know SUGAR?

THERE’S MORE TO SUGAR THAN YOU MIGHT THINK
Table of Contents

THE BASICS
What Is Sugar? 3
Sugar’s Path from Farm to Table 5
History of Sugar 8
Types of Sugar 9

SUGAR AND THE DIET
A Special Ingredient: Why Sugar Is in Foods 12
2015–2020 Dietary Guidelines for Americans: Defining Moderation 13
Consumption Trends 13
Sources of Added Sugars in the Diet 15

SUGAR AND HEALTH
16

SUGAR MYTHS
18

NAVIGATING SUGARS AND SWEETENERS IN FOODS AND BEVERAGES
Added Sugars on the Nutrition Facts Label 19
Sugars? Sugar? Added Sugars? 21
Other Sweeteners 22

BEYOND FOODS: NON-FOOD USES FOR SUGAR
23

FUN FACTS
25

COOKING AND BAKING FAQS
26
What Is Sugar?
A Closer Look at Its Origin and Structure

You may have heard the term “sucrose” at one point or another—but what is that, really? While it might sound overly technical or even man-made, sucrose is simply the chemical name for sugar, the simple carbohydrate we know and love that is produced naturally in all plants, including fruits, vegetables and even nuts.

Brought to You by Nature

All green plants make sugar or sucrose (sugar’s molecular name) through photosynthesis, the process plants use to transform the sun’s energy into food.

THE BASICS

Of all plant types, sugar beets and sugar cane make the greatest quantities of sugar, which is why they are the most efficient choices from which to extract sugar. The sugar that’s extracted from sugar beet or sugar cane plants is identical to the sugar that’s still found intact when you bite into fruits and vegetables. Sugar is completely pure, and contains no preservatives or additives of any kind. That means the sugar we keep in our pantry, the sugar added to bread to help it rise and the sugar in sweet treats we enjoy in moderation is exactly the same as sugar that’s naturally in peaches, almonds, sweet peas and more.¹
Chemical Structure
Sugar is sucrose, but what does it look like? Sugar’s chemical structure is quite simple, as far as molecules go. It contains just two molecules, bound together by Mother Nature: one molecule of glucose is bound to one molecule of fructose.

Glucose, fructose and galactose are the three building blocks that make up all forms of carbohydrates. These three simple sugars are also known as monosaccharides. They bond with each other and themselves to make more complex carbohydrates. All carbohydrates are made up of one or more molecules of those simple sugars. No matter how complex a carbohydrate is to start with, once in the body, all carbohydrates are broken down to these three simple sugars: glucose, fructose and galactose.

So, Sugar Is Just a Carbohydrate
Carbohydrates, along with fat and protein, are macronutrients that provide the body with energy. Carbohydrates are found in all plant and dairy foods and beverages that provide your body with calories.

Carbohydrates are the preferred energy source for the body because the majority contain glucose. Glucose is the fuel your brain, organs and muscles need to function and engage in everyday activities.
Sugar’s Path from Farm to Table

Sugar’s Story Starts in the Field

Every day, family farmers plant, harvest and care for sugar beets and sugar cane used to bring the classic sweet flavor—and more—to the foods we enjoy. Many of these sugar beet and sugar cane farms have been passed down for several generations, making sugar growing an important family legacy.

Many fruits, nuts and vegetables contain sugar, with some containing as much as 10% sucrose! However, nothing tops sugar beets and sugar cane, which contain about 16% and 14%, respectively, making them the most efficient way for farmers to grow and harvest sugar.

SUGAR/SUCROSE OCCURS NATURALLY IN FRUITS, VEGETABLES AND NUTS**
(PER 100 GRAMS, EDIBLE PORTION–RAW)

<table>
<thead>
<tr>
<th>Fruit/Animal</th>
<th>Glucose</th>
<th>Fructose</th>
<th>Sucrose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lentils</td>
<td>0</td>
<td>0</td>
<td>18%</td>
</tr>
<tr>
<td>Sweet Potatoes</td>
<td>0</td>
<td>0</td>
<td>15%</td>
</tr>
<tr>
<td>Grapes</td>
<td>3%</td>
<td>0</td>
<td>9%</td>
</tr>
<tr>
<td>Carrots</td>
<td>6%</td>
<td>0</td>
<td>12%</td>
</tr>
<tr>
<td>Almonds</td>
<td>9%</td>
<td>0</td>
<td>15%</td>
</tr>
<tr>
<td>Oranges</td>
<td>12%</td>
<td>0</td>
<td>18%</td>
</tr>
<tr>
<td>Cabbage</td>
<td>15%</td>
<td>0</td>
<td>9%</td>
</tr>
<tr>
<td>Peaches</td>
<td>18%</td>
<td>0</td>
<td>6%</td>
</tr>
<tr>
<td>Peanuts</td>
<td>15%</td>
<td>0</td>
<td>9%</td>
</tr>
<tr>
<td>Strawberries</td>
<td>9%</td>
<td>0</td>
<td>12%</td>
</tr>
<tr>
<td>Cashews</td>
<td>6%</td>
<td>0</td>
<td>12%</td>
</tr>
<tr>
<td>Apricots</td>
<td>9%</td>
<td>0</td>
<td>12%</td>
</tr>
<tr>
<td>Pistachios</td>
<td>12%</td>
<td>0</td>
<td>9%</td>
</tr>
<tr>
<td>Mangos</td>
<td>15%</td>
<td>0</td>
<td>9%</td>
</tr>
<tr>
<td>Sugar Cane</td>
<td>18%</td>
<td>0</td>
<td>6%</td>
</tr>
<tr>
<td>Sugar Beets</td>
<td>15%</td>
<td>0</td>
<td>9%</td>
</tr>
</tbody>
</table>
Sugar beets are a root crop, and they flourish in temperate climates where the soil is rich and the growing season is about 5 months long. They’re much larger than the beets you might see in the produce section of the grocery store or the ones grown in backyard gardens, weighing a whopping 3–5 pounds when harvested. Today, sugar beet farms can be found in California, Colorado, Idaho, Michigan, Minnesota, Montana, Nebraska, North Dakota, Oregon, Washington and Wyoming.

Sugar cane is a tropical grass that grows 10–20 feet high. It’s a perennial plant—which means it doesn’t need to be replanted every year. When sugar cane is harvested, it’s cut just above the root level so new sprouts will grow, ready to be harvested again in 10–12 months. Today, three U.S. states grow sugar cane: Florida, Louisiana and Texas. Raw sugar is refined in California, Florida, Louisiana, Georgia, Maryland, Michigan and New York.
Refining and Processing
After sugar is harvested by farmers, it is processed and refined to ensure consistency and quality.

Whether sugar comes from sugar beets or sugar cane, the purification process is similar for each plant and the result is the same pure sucrose.

One difference in processing between the two plants is that sugar beets are processed at a single facility (a sugar beet factory) and sugar cane is refined at two facilities (the process starts at a raw sugar factory and finishes at a refinery).

SUGAR CANE REFINING

1. **Harvest the sugar cane**
2. **Crush, soak and squeeze the cane to extract the juice and separate it from the plant material**
3. **Boil the juice until the syrup thickens and crystallizes**
4. **Spin the crystals in a centrifuge to remove liquid and produce raw sugar**
5. **Transport the raw sugar to a refinery to remove impurities**
6. **Melt the raw sugar and filter the remaining impurities and extra color to produce sugar syrup**
7. **Crystallize the sugar from the sugar syrup**
8. **Dry the sugar crystals**

SUGAR BEET PROCESSING

1. **Harvest the sugar beets**
2. **Wash, slice and soak the beets to extract the juice and separate it from the plant material**
3. **Clean the juice to remove impurities and extra color to produce sugar syrup**
4. **Crystallize the sugar from the sugar syrup**
5. **Spin the crystals in a centrifuge to remove liquid**
6. **Dry the sugar crystals**

Little Is Wasted in Sugar Processing
Most of the non-sugar materials generated in sugar processing are used for other purposes, recycled or reused.

- Molasses, used by bakers, distillers and pharmaceutical companies as well as for animal feed and more, is extracted through the beet and cane sugar refining processes. It takes about four rounds of extraction to remove the molasses to obtain the maximum amount of sucrose.

- The sugar beet residue, or pulp, is generally used for animal feed or further processed for use as fiber or other carbohydrate-based products.

- Carbon chips, used in sugar cane filtration, are recharged (revivified) and reused too.

- In addition, much of the water removed along the way still contains sucrose (called "sweetwater"), so it’s pumped back into the stations to be used again.
Sugar is one of the world’s oldest documented commodities. While chewing sugar cane for its sweet taste was likely done in prehistory, the first indications of the domestication of sugar cane were around 8000 BCE. It spread from the Polynesian region across the world, with strides in cultivation and processing along the way (crystallization in 100 CE and large-scale refinement in 1455). Sugar cane was brought to the Americas in the 15th century. In 1747, German chemist Andreas Marggraf identified sugar in beet roots, and the first sugar beet processing facility was built in Poland in 1801. Sugar beets were brought to the United States shortly after, with the first successful U.S. commercial production of beet sugar in California in 1879. Sugar beets are now grown in 52 countries and sugar cane is grown in 80 countries.
Types of Sugar

All sugar is made by first extracting sugar juice from sugar beet or sugar cane plants, and from there, many types of sugar can be produced. Through slight adjustments in the process of cleaning, crystallizing and drying the sugar and varying the level of molasses, different sugar varieties are possible. Sugar of varying crystal sizes produce unique functional characteristics that make the sugar suitable for different foods and beverages. Sugar color is primarily determined by the amount of molasses remaining on or added to the crystals, giving pleasurable flavors and altering moisture. Heating sugar also changes the color and flavor (yum, caramel!). Some types of sugar are used only by the food industry and are not available in the supermarket.
White Sugars (contain little or no molasses)

Granulated sugar (Table sugar)
- “Regular” or granulated sugar is what you typically find in your sugar bowl
- Granulated sugar is the most common sugar called for in recipes when cooking and baking
- “Regular” sugar granules are fine because small crystals are ideal for bulk handling and not susceptible to caking

Powdered sugar
- Powdered or confectioners sugar is simply granulated sugar ground to a smooth powder, mixed with a small amount of cornstarch to prevent caking and then sifted
- Powdered sugar is often used in icings, confections and whipping cream
- You can make it at home: blend 1 cup white sugar and 1 tablespoon cornstarch to get 1 cup of powdered sugar

Sanding sugar
- Used mainly in baking and confectionery as a sprinkle on top of baked goods, sanding sugar can have large or fine crystals
- This sugar reflects light and gives the products a sparkling appearance

Brown Sugars (contain varying levels of molasses)

Light and Dark Brown sugar
- Brown sugars are made by mixing white sugar with various amounts of molasses
- Light brown sugar is often used in sauces and most baked goods
- Dark brown sugar has a deeper color and stronger flavor than light brown sugar. The rich, full flavor makes it ideal for gingerbread, baked beans, barbecuing and other full-flavored foods
- Brown sugars tend to clump because they contain more moisture than white sugars, allowing baked goods to retain moisture well and stay chewy

Turbinado sugar
- Turbinado sugar, sometimes known as Demerara sugar or Raw cane sugar, is a partially processed sugar which retains more of the naturally present molasses
- It has a blond color, mild brown sugar flavor and larger crystals than brown sugar used in baking
- Turbinado sugar is the sugar in your packet of “raw cane sugar.” This type of sugar has been processed just enough to make it safe to eat

Muscovado sugar
- Muscovado sugar, also known as Barbados sugar, is an unrefined cane sugar in which the molasses has not been removed
- This sugar is very dark brown and has a particularly strong molasses flavor
- Muscovado sugar crystals are slightly coarser and stickier than regular brown sugar, giving it a sandy texture
Everything has a place in moderation. When it comes to sugar, it is an ingredient that plays many roles in nutritious foods and adds pleasure to life with occasional indulgences. It’s true: a balanced life is a sweet life.
Sugar is a special ingredient that provides sweetness and so much more. Have you been surprised to find it in foods that don’t necessarily taste sweet? There’s a reason. Sugar has many functional properties that range from balancing acidity or adding bulk to preventing spoilage. It’s been used in recipes for generations, often for reasons that have little to do with its sweet flavor.

SUGAR’S FUNCTIONAL ROLES IN FOOD BEYOND SWEETNESS

<table>
<thead>
<tr>
<th>Category</th>
<th>Flavor Enhancer/ Balancer, Aroma</th>
<th>Bulk</th>
<th>Texture/ Mouthfeel</th>
<th>Shelf-life/ Microbial Stability</th>
<th>Fermentation</th>
<th>Freezing Point Depression</th>
<th>Color</th>
<th>Moisture Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole-Grain, Fiber-Rich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breads</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakery Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salad Dressings, Rubs and Sauces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preserves & Pickling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jams & Jellies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canned Fruits & Vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepared Foods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beverages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frozen Beverages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fermented Beverages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice Cream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confectionery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Added sugars provide sweetness that can help improve the palatability of foods, help with preservation, and/or contribute to functional attributes such as viscosity, texture, body, color, and browning capability.

DIETARY GUIDELINES FOR AMERICANS, 2015-2020®
2015–2020 Dietary Guidelines for Americans: Defining Moderation

Since 1980, the U.S. government has published the Dietary Guidelines for Americans, updating them every 5 years. Each version of the guidelines has included a general recommendation for Americans to moderate intake of sugars. The 2015–2020 Dietary Guidelines for Americans were the first to quantify moderation, recommending Americans limit added sugars to no more than 10% of calories per day (or 50 grams based on a 2000-calorie diet). This recommendation is based on food pattern modeling (a tool used to figure out how you can meet all of your food group recommendations within calorie needs), and the 10% target is an attempt to help individuals move toward healthy eating patterns within calorie limits. For more information about the dietary guidelines, visit dietaryguidelines.gov.

Consumption Trends

While added sugars consumption increased sharply in the 1990s, consumption has been on a significant decline in the United States for the past 20 years. In 2015–2016, added sugars consumption was reported to be about 13% of total calories, or around 270 calories per day. This is still slightly above the Dietary Guidelines for Americans recommendation of no more than 10% of calories from added sugars per day.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>% OF CALORIES FROM ADDED SUGARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999–2000</td>
<td>18.1</td>
</tr>
<tr>
<td>2001–2002</td>
<td>17.1</td>
</tr>
<tr>
<td>2003–2004</td>
<td>15.9</td>
</tr>
<tr>
<td>2007–2008</td>
<td>14.6</td>
</tr>
<tr>
<td>2009–2010</td>
<td>13.9</td>
</tr>
<tr>
<td>2011–2012</td>
<td>14.1</td>
</tr>
<tr>
<td>2013–2014</td>
<td>13.4</td>
</tr>
<tr>
<td>2015–2016</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Overall, the public health recommendation about ‘added sugars’ must be balanced with the reality that sugar added to food is an important piece of the food science puzzle given its several functionalities in food. Not only can a spoonful of sugar help the medicine go down, but it can help fruits, vegetables and fiber go down as well.

GOLDFIEN AND SLAVIN, 2015

Dietary data are frequently reported as total added sugars, a combination of the intakes of all caloric sweeteners: sugar, high-fructose corn syrup, honey, maple syrup and so forth. If we look at just sugar intake, consumption of sugar (sucrose) from sugar beets and sugar cane, there has been a decrease of about 30% from 1970 to 2016, which is a drop from 283 calories (17.7 teaspoons) per day to 193.7 calories (12.1 teaspoons) per day.
Putting Added Sugars and Sugar Intake into Perspective of the Total Diet

We all know that there is a serious obesity problem in the United States. With that in mind, it should come as no surprise that during a 40-year period, Americans’ daily consumption went up by more than 450 calories.13 Not to mention that as a society, we move a lot less.14,15

In 1970, people were consuming 2024 calories each day. Fast-forward to 2010 (the most recent calorie availability data), and that figure jumped to 2476—nearly a 25% increase in calories. But added sugars didn’t make up a very big percentage of the increased intake. Over that same period, added sugars consumption increased by only 12 calories per day (a 4% increase), from 20.8 teaspoons per day to 21.6 teaspoons per day in 2017.16–18 Calories from added fats and oils have increased by 225 calories per day (a 66% increase) and calories from grains have increased by 116 calories per day (a 28% increase).13,19

Going Way Back
The U.S. Department of Agriculture has been collecting food supply data for a long time! Looking back over 100 years, sugars and sweeteners made up 11.9% of all calories in the food supply in 1909. Over the past century, there have been some ebbs and flows in this percentage, the highest being 18.2% in 1997–1999. However, since the turn of the 21st century, the percentage of calories from sugars and sweeteners has dropped steadily. It is important to note that total calorie intake has come up since 1909, but as a percentage of total calories, total sugars and sweeteners consumption is on the decline.20

The most recent report was published in 2010, and sugars and sweeteners make up even less now.

The calories contributed by major food groups have also shifted over the years. Here’s a look at the makeup of the total calories in our diet and the way they’ve changed since 1909.20

Over the past century, there have been some ebbs and flows in this percentage, the highest being 18.2% in 1997–1999. However, since the turn of the 21st century, the percentage of calories from sugars and sweeteners has dropped steadily. It is important to note that total calorie intake has come up since 1909, but as a percentage of total calories, total sugars and sweeteners consumption is on the decline.20

The most recent report was published in 2010, and sugars and sweeteners make up even less now.

The calories contributed by major food groups have also shifted over the years. Here’s a look at the makeup of the total calories in our diet and the way they’ve changed since 1909.20
Sources of Added Sugars in the Diet

Added sugars are found in a variety of foods and beverages for different reasons, many times for functions beyond sweetness. Calorically sweetened beverages such as soft drinks, tea and fruit drinks are the main source of added sugars in the diet across all age groups (older than 2 years), making up almost half of added sugars calories (47%). Snacks and sweets are the second main source of added sugars calories, making up close to one-third (31%). Also among the top sources of added sugars in the diet are foods that contain important nutrients such as fibers, vitamins and minerals. These foods include ready-to-eat cereal, flavored milk and yogurt. Sugars are added to these products for functional purposes, including making certain nutritious foods more enjoyable to eat. Because of this, sugar is a key partner in nutrient delivery.

In a recent analysis of people with low and high intakes of added sugars, people on the lower end of added sugars intake chose similar types of foods with added sugars as those on the higher end. The main differences were in the amounts of specific foods chosen. From this analysis, we can see that many people are enjoying the same types of foods that contain added sugars, but the portion sizes are different.

The 2015–2020 Dietary Guidelines for Americans reported that in 2014 added sugars made up 13.4% of total calories in the diet. Below is the breakdown of where those calories come from.

The 2015–2020 Dietary Guidelines for Americans recommend that we limit our added sugars consumption to 10% of total calories, making the current average consumption slightly higher than recommended. However, it is important to note that a healthy diet includes up to 10% of calories from added sugars, allowing room for sugars in nutritious foods and occasional sweets and treats. Sugar-containing foods and drinks that don’t contribute significant nutritional value should be considered treats and consumed in moderation within caloric needs.

Choose a healthy eating pattern at an appropriate calorie level to help achieve and maintain a healthy body weight, support nutrient adequacy, and reduce the risk of chronic disease... To meet nutrient needs within calorie limits, choose a variety of nutrient-dense foods across and within all foods groups in recommended amounts.

DIETARY GUIDELINES FOR AMERICANS, 2015–2020
SUGAR AND HEALTH

The Basics
Sugar, or sucrose, is a carbohydrate. Carbohydrates are the primary source of energy for the human body. In fact, glucose (a product of carbohydrate digestion) is essential to the function of the central nervous system. The essential role of carbohydrates, including sugar, as an important source of fuel for the body is nothing new. Sugar (sucrose), whether intact in fruits and vegetables or in the popular extracted and crystalized form, has been incorporated in the diets of humans throughout all of time. Like many other foods and ingredients, sugars have been the subject of numerous scientific studies, which help deepen the understanding of the impact food choices have on health. And while emerging research will always reveal new information, the scientific evidence consistently shows that a healthy lifestyle based on moderation, a variety of food choices and physical activity tends to lead to the best outcomes when compared to simply focusing on cutting out or adding one ingredient or another. Here we review a few health outcomes and what we know about the role of sugar. It is important to point out that scientific evidence does not support adverse outcomes of sugar intake when sugar is consumed in moderation and as part of a diet where calories are not eaten in excess.

There has been extensive research focus on soda or other caloric beverages and their role in health outcomes. While these studies provide data on the role that caloric beverages may have in health, these beverages are not a proxy for all the ways that sugar is consumed in the diet and these studies should not be extrapolated to represent the role of sugar in health.

Obesity
The cause of obesity is a complex issue and there are many factors that contribute to obesity, including excess caloric intake, genetics and low physical activity levels, along with other factors. Just like protein, starch, fat, alcohol and other carbohydrates, sugar is a source of calories in the diet. Excess calories from any source, including sugar, can lead to weight gain, increasing the risk of obesity and other chronic diseases. A recent systematic review of the evidence concluded that “if there are any adverse effects of sugar, they are entirely due to the calories it provides.” Additionally, three authoritative scientific organizations, including the U.S. Institute of Medicine, European Food Safety Authority, and the U.K. Scientific Advisory Committee on Nutrition, each conducted extensive scientific reviews of “added sugars” and obesity and found no unique role for added sugars in the development of obesity.

Data from the past 40 years show that obesity trends do not mirror trends in sugars consumption. Obesity has gone up as sugars intake has gone down. However, total calorie consumption has paralleled the rise in obesity rates.

CONSUMPTION OF ADDED SUGARS AND PREVALENCE OF OBESITY IN THE UNITED STATES, 1974-2016

Prevalence of obesity among adults Consumption of caloric sweeteners per person, per day (USDA availability data)
Type 2 Diabetes
Over 30 million Americans have diabetes, a condition that causes poor regulation of blood glucose.\(^{42}\) Being overweight increases the risk for developing type 2 diabetes, and a diet high in calories from any source contributes to weight gain, according to the American Diabetes Association. While sugar does provide calories and, when eaten in excess of calorie needs can contribute to weight gain, experts agree that “Type 2 diabetes is not caused by sugar, but by genetics and lifestyle factors.”\(^{43}\) A major review of studies examining risk factors for type 2 diabetes demonstrated no effects of increasing sugars intake on diabetes risk. However, this review and others have identified an association between sugar-sweetened beverages (SSB) and higher risk for type 2 diabetes.\(^{36,44}\)

Cardiovascular Disease
Heart disease, the single largest cause of mortality in the United States and worldwide, has many underlying risk factors, including dyslipidemia, high blood pressure, inactive lifestyle, obesity, diabetes and cigarette smoking. Nutritional patterns may play a role in several of these risk factors; however, evidence for a specific role of carbohydrates or sugars in cardiovascular disease (CVD) has been heavily debated and not fully settled by scientists. If there is any role of carbohydrates and sugars in CVD progression, it is likely dependent on whether they are consumed as part of calorically abundant diet and eaten in excess of normal ranges.\(^{36,45}\) Recent reviews have found that when calories are matched, fructose-containing sugars (like sucrose) do not appear to cause weight gain compared to other forms of macronutrients (other carbohydrates, fats and protein) or impact blood pressure; however, when sugars provide excess calories, this can lead to weight gain and increases in cardiometabolic risk factors.\(^{31,46}\)

Dental Caries
Frequent consumption of foods and drinks that contain fermentable carbohydrates (including sugars, both naturally occurring and added) can increase the risk of tooth decay. Fermentable carbohydrates can be broken down by bacteria in your mouth to produce acid that can lead to tooth decay without proper dental hygiene. While there are many studies on the relationship between amount of sugar consumed, frequency of intake and dental caries, recent reviews\(^{36,38,47–51}\) and recommendations\(^{5,37,52}\) are mixed on whether there is sufficient evidence to set an upper level of intake of added sugars to reduce risk of dental caries. The best way to protect your teeth is to brush them with fluoride toothpaste twice a day and reduce the amount of time your teeth are exposed to these carbohydrates by consuming sugary foods and drinks at mealtimes.\(^{53}\)

New research will always be underway related to the health effects of food choices and it is important to consider the level of evidence each study provides when documenting the relationship between food choices and the development of certain disease states. Separating the contributions of specific foods from related dietary and lifestyle factors is difficult and a constant challenge for researchers. The majority of research suggesting an adverse effect of sugar has involved excessive caloric intake, coupled with very high intakes of added sugars.\(^{54}\)

To simplify the science: by practicing moderation and portion control, there is room to include an appropriate amount of sugar in a healthful lifestyle.
Reduced sugar doesn’t mean reduced calories. When sugar is removed from a food, other ingredients need to take its place. Compare product labels to see what the entire nutrient package of a product is when making purchasing decisions.

Raw sugar is not healthier than table sugar. Raw sugars, brown sugars and any white sugars are all processed the same in the body. Darker colors are due to varying but small amounts of molasses left on the sugar crystals. The nutrients that are contained in this amount of molasses are so small that they offer no real nutritional value.

Added sugars intake has not increased dramatically over the last several decades. You might be surprised to learn it’s on the decline. See page 14 for the specifics.

There is no single ingredient that can replace sugar’s flavor and function. Sugar is a natural ingredient that has been in our diets for centuries. Sugar alternatives offer sweetness but can’t replicate all of the other important functions that sugar provides such as texture, preservation and so forth. When sugar is replaced, often several ingredients are added.

Sugars aren’t hidden in foods. While sugars may be added for functional purposes to foods you may not expect, sugars aren’t hidden in foods. The food labels on the back (or side) of the pack always show the list of ingredients (in descending order of weight) and soon all products will also include both the total sugars and added sugars content on the Nutrition Facts Label to help you know the amount of sugars you’re consuming in a single serving.

Added sugars aren’t simply empty calories that displace intakes of essential nutrients. Adding a limited amount of sugars to foods that provide important nutrients—such as whole-grain cereal, flavored milk or yogurt—to improve their taste, especially for children, makes sugar a key partner in nutrient delivery. For example, the sweetness and thickness that sugar adds to fat-free chocolate milk increases its palatability for kids, which provides important shortfall nutrients such as calcium, potassium and vitamin D.\(^\text{6,55}\)

Sugars aren’t added to foods to make everything taste sweet. Added sugars provide functions beyond sweetness in many foods. See page 12 for specific examples.

Added sugars are not the cause of obesity, diabetes or cardiovascular disease. Scientific evidence suggests that sugar does not directly cause conditions such as obesity or diabetes. See page 16 for more info on sugar and health.

Avoiding added sugars won’t prevent cavities. Sugar, whether naturally occurring or added, and any other fermentable carbohydrate can increase the risk of cavities. Other risk factors include poor dental hygiene and lack of fluoridated water or dental products. The most effective way to reduce cavities is to reduce the amount of time sugars and starches are in contact with the teeth, drink fluoridated water and brush and floss teeth regularly. See page 16 for more info.

Sugar is not addictive. Scientific evidence does not support the idea that sugar (or any other foodstuff) can be addictive.\(^\text{56–58}\) There are many factors involved in choosing foods and choosing to eat—with psychological and behavioral components not to be overlooked. Certain foods and drinks of course can be pleasurable to consume, but it’s important not to confuse this with clinical addiction.

Sugar doesn’t make cancer cells grow faster. While there is still a lot about cancer we don’t know, according to the Mayo Clinic, “All cells, including cancer cells, depend on blood sugar (glucose) for energy, but giving more sugar to cancer cells does not speed their growth. Likewise, depriving cancer cells of sugar doesn’t slow their growth.”\(^\text{59}\) Glucose is found in most carbohydrates but is not synonymous with sugar.

Sugar is not a high glycemic food. Sugar has a moderate glycemic index (GI), similar to that of wheat bread. Sugar’s GI is 58, just 3 points above the low GI range (55 or less). High glycemic foods have a GI of 70 or more.\(^\text{60}\)
According to the 2015–2020 Dietary Guidelines for Americans, a healthy diet includes up to 10% of calories from added sugars, allowing room for sugars in nutritious foods and occasional sweets and treats. It is important to remember that sugar-containing foods and drinks that don’t contribute significant nutritional value should be considered treats and consumed in moderation within caloric needs.

The goal of the Food and Drug Administration’s (FDA) Nutrition Facts Label is to “ensure consumers have access to the information they need to make informed decisions about the foods they eat.” However, understanding and knowing how to use the information on the Nutrition Facts Label is an essential part of dietary success. While the label is found on almost all products, it is important to look at how each food and beverage fits into an entire day’s intake and not just focus on what is in one product. It’s also helpful to examine the entire nutrient package of a product and consider how it fits in your total daily diet instead of focusing on one nutrient. History shows us that focusing on a single nutrient, like fat or sugar, is not helpful to achieving a balanced diet or improving nutrient intakes or health.

“Rather than trying to isolate a single dietary culprit, we should focus on the whole picture.”

ALICE H. LICHENSTEIN, DSc
TUFTS UNIVERSITY HEALTH AND NUTRITION LETTER, 2015

History of Nutrition Labeling
The first Nutrition Facts Label was introduced in 1994 following the Nutrition Labeling and Education Act of 1990, which made including nutrition facts on packaged food law. Prior to this, the only mandatory information on these foods was the food’s name, quantity, ingredients and the name and address of the manufacturer. Nutrition information was only required on products making a nutrition claim or if they were fortified with vitamins, minerals or protein.
Here is some quick info to help avoid any added confusion when using the label:

+ **Total sugars** This number includes the total of both naturally occurring sugars and added sugars. For example, in strawberry yogurt the naturally occurring sugars come from both the milk and the strawberries, and the added sugars come from the sugars added to balance and enhance flavors.

+ **Added sugars** Added sugars, as defined on page 41, are listed to help you know how much you are consuming. The 2015–2020 Dietary Guidelines for Americans recommend you consume less than 10% of calories per day from added sugars. That is because it is difficult to get the nutrients you need for good health while staying within calorie limits if you consume more than 10% of your total daily calories from added sugars.64

+ **Percent daily value** Shown as a general rule, the percent daily value tells you how much a nutrient in a serving of food contributes to a daily diet, based on a target of 2000 calories per day.

+ **Ingredient list** While not technically a part of the Nutrition Facts Label, ingredients are listed in descending order by weight on the back (or side) panel of packaged foods.

“The FDA recognizes that added sugars can be a part of a healthy dietary pattern. But if they are consumed in excess, it becomes more difficult to also eat foods with enough dietary fiber and essential vitamins and minerals and still stay within calorie limits.” Having access to added sugars information on the Nutrition Facts Label increases consumer awareness of the quantity of added sugars in foods. “Consumers may or may not decide to reduce the consumption of certain foods with added sugars, based on their individual needs or preferences.”61
Sugars? Sugar? Added Sugars?

Understanding exactly what the differences are can be confusing and even a little bit frustrating, especially when there are a lot of inconsistencies in how these terms are used. To clarify, let’s take a look at some quick definitions and links to what they actually mean.

Sugars

Sugars is a term referring to a broad category of all mono- and disaccharides: the simplest carbohydrates. Monosaccharides include glucose, galactose and fructose, and disaccharides include sucrose, lactose, maltose and trehalose. Sugars can be naturally occurring (e.g., found in fruits, vegetables, dairy products and nuts); they can be extracted from plants and dairy and added to foods; or they can be made using various plant or dairy ingredients as a starting point.

Sugar

Sugar refers only to sucrose, a disaccharide, made up of two sugars (glucose and fructose) bound together, that is naturally made and found in all green plants. Sugar found in the food supply is harvested from sugar beets and sugar cane.

Added Sugars

Added sugars refers to a category that includes a variety of caloric sweeteners, including sugar and many others sweeteners that are classified as sugars. Added sugars do not include non- and low-calorie sweeteners.

The term “added sugars” was defined by the FDA in 2016 as sugars that are:

- added during the processing of foods, or are packaged as such;
- free, mono- and disaccharides;
- sugars from syrups and honey; and
- sugars from concentrated fruit or vegetable juices that are in excess of what would be expected from the same volume of 100% fruit or vegetable juice of the same type.

The FDA definition of added sugars does not include:

- fruit or vegetable juice concentrated from 100% fruit juice that is sold to consumers; and
- the fruit component of fruit spreads.

While many whole foods contain naturally occurring sugars (e.g., sucrose, glucose or fructose in fruit and lactose in milk), these are not considered added sugars when found in whole foods. Other sweeteners such as sugar alcohols, low-calorie sweeteners and no-calorie natural sweeteners are also not considered added sugars. Next you’ll find more information about and examples of others sweeteners.
Other Sweeteners

On the ingredient list you’ll often find other sweeteners, sometimes in combination with sugar for both flavor and functional reasons. These other sweeteners can be caloric (included in “added sugars” on the Nutrition Facts Label), low-caloric or non-caloric. Some examples are included in the chart below. The sweetness and functionality of other sweeteners varies from product to product, so when it comes to ingredient substitution or product reformulation, sugar can’t simply be replaced by another single ingredient.

| OTHER SWEETENERS |
|------------------|------------------|------------------|
| CALORIC | LOW-CALORIC | NON-CALORIC |
| Brown Rice Syrup | Isomalt | Acesulfame K |
| Coconut Sugar | Mannitol | Aspartame |
| Corn Syrup | Monk Fruit | Neotame |
| Dextrose | Sorbitol | Saccharin |
| High-fructose Corn Syrup | Sugar Alcohols | Stevia |
| Honey | Xylitol | Sucralose |
| Maltodextrin | | |
| Maple Syrup | | |

There is no substitute for sugar. As a functional ingredient, sugar can’t simply be replaced by another single ingredient. Its versatility is unmatched.
Beyond Foods: Non-Food Uses For Sugar

Sugar is a versatile and irreplaceable functional ingredient in food. In addition to providing sweetness, sugar is also used to balance acidity, add bulk or prevent spoilage, among other functional properties. But did you know that sugar is also used in the production of medication, to make bioplastics for planes and can extend the life of your fresh cut flowers? Explore the many uses of sugar that go beyond sweetness and beyond food.

Health

Medicine: Sugar is used to for coating, adding volume or texture and flavoring medicine. It can also act as a preservative and antioxidant.

Soothe a sore throat: Sucking on a lozenge or hard candy increases salvia production, helping keep your throat moist and lubricating the irritation.

Heal wounds: Many of the same properties that make sugar an excellent preservative also make sugar effective in wound healing. When sugar is applied to an open wound, it absorbs the wound’s moisture, which prevents the growth of bacteria. While there are records that date back to 1700 BCE, recent research has also been conducted in this area.65

Beauty

Sugar is used in cosmetics for its exfoliating and moisturizing properties. Sugar cane extracts are also used in moisturizers and face masks.

Try a sugar body scrub: Sugar scrubs are great for exfoliating. Make your own simple body scrub by mixing sugar with oil (coconut, almond, jojoba or olive all work well) to create a loose paste. Gently rub the paste on your skin and then rinse it off in the shower.

Make lipstick last longer: Sprinkle a little bit of sugar on your lips after applying lipstick, wait a minute, then lick it off. The sugar draws moisture from the lipstick and will extend the color.

Home and Garden

Clean your hands: Do you have greasy or dirty hands from cooking, gardening or working on your car? Put about a teaspoon of sugar into the palm of your hand before washing with soap as usual. The sugar helps cut the grease and acts as an abrasive to scrub the mess away.

Keep cut flowers fresher, longer: Add 3 teaspoons of sugar and 2 tablespoons of vinegar per quart of warm water, then add fresh-cut flowers. The sugar feeds the stems and the vinegar restricts the growth of bacteria. Replace the water every other day.

Keep baked goods fresh: Add a few sugar cubes to the airtight container holding your baked goods. The sugar will absorb the moisture and keep your bread, cakes, cookies, and biscuits fresher, longer.

Combat garden pests: To naturally combat garden pests like nematodes, sprinkle plants and the soil around them with handfuls of sugar. The sugar will feed microorganisms, which will increase the organic matter in the soil while making it a hostile environment for nematodes.
Industrial and Agricultural

Electricity: Sugar cane bagasse is often used to make electricity for the sugar cane mills and refineries. Some factories even supply electricity to nearby towns.

Bioplastics: Sugar cane is used to make bioplastics used in a wide range of rigid and flexible materials, including food and drink packaging, acoustical paneling and airplane parts. A few recent innovations are included below.

- **Legos:** Lego started using sugar cane-based polyethylene in its botanical elements such as trees, bushes and leaves at the Billund, Denmark, production plant in 2018.
- **Electric car panels:** The honeycomb structured core from sugar cane (PLA) is one of the sustainable materials being used in the body panels of circular electric cars being developed in the Netherlands.

Biofuels: Sugar is used in the production of biofuels like ethanol, an additive in automotive gasoline.

Beer, wine and distilled spirits: Sugar is involved in the fermentation process that produces ethanol in alcoholic beverages.

Ingredients for foods and medicines: Sugar molasses is used in the production of ingredients for foods and medicines.
- **Lysine:** an essential amino acid used to make medicine. Lysine is used for preventing and treating cold sores and is also found in supplements.
- **Lactic acid:** used in prepared foods for preservation and flavor, and also as a curing agent.
- **Citric acid:** used in prepared foods for preservation and flavor (sour).
- **Yeast:** used in baking and brewing industries.

Paper products: Sugar cane bagasse is used to make:
- **Office products:** copy paper, envelopes, cardstock and more
- **Take-out containers:** eco-friendly solution to Styrofoam

Cement and glue: Sugar slows the setting of cement and glue.

Livestock feed: Sugar production byproducts and molasses are used as feed supplements for livestock.
FUN FACTS

Sugar is naturally white. It is simply removed from sugar beet or sugar cane plants and washed to remove the naturally present molasses and other plant materials.

+ Sugar doesn’t spoil.
+ Sugar (sucrose) is the standard for the measurement of sweetness and has a relative sweetness score of 100.²
+ Sugar has just 15 calories per teaspoon.
+ Sugar is used to mask the bitter taste of medicines. It was one of the first pharmaceutical ingredients used for this purpose and still is today.
+ Ever wonder why even low-fat chocolate milk tastes like whole milk? Sugar serves the dual purpose of increasing the thickness of the milk and enhancing the sweetness of the cocoa.
+ Sugar has healing powers. Many of the same properties that make sugar an excellent preservative also make sugar effective in wound healing. When sugar is applied to an open wound, it absorbs the wound’s moisture, which prevents the growth of bacteria. While there are records that date back to 1700 BCE, recent research has also been conducted in this area.
+ Sugar is grown and/or refined in 17 states across the United States.
+ All sugar products in the marketplace differ only in crystal size or molasses content. Molasses adds color, flavor and moisture. The darker the brown sugar, the more molasses it has.
COOKING AND BAKING FAQS

How can I soften hard white sugar?
Sugar hardens when it is exposed to moisture, like high humidity, and then the surface dries. Break the hardened sugar into manageable pieces with a meat tenderizer or heavy mixing spoon. Toss the pieces into a food processor or blender, and blend until smooth. It’s best to keep your sugar in a sealed container.

How can brown sugar be stored to prevent hardening?
Brown sugar hardens when its moisture evaporates. Storing brown sugar in a way that allows the product to retain its natural moisture—in its original plastic bag (closed tightly) or in an airtight container—helps brown sugar stay moist.
If brown sugar hardens, let it stand overnight in a sealed jar with a damp paper towel or apple slice. For a quick fix, heat the needed amount in a 250° F oven for a few minutes, or in a microwave oven on low for 1–2 minutes per cup. The softened brown sugar should be used immediately.

Can I substitute brown sugar for white granulated sugar in recipes?
Yes. While white sugar can be substituted with an equal amount of brown sugar, brown sugar will add a slight molasses flavor to your recipe.

Can I make my own brown sugar?
Yes! Combine 1 tablespoon of molasses with 1 cup of white granulated sugar. Mix well.

Can confectioners (powdered) sugar be substituted for granulated sugar in a recipe?
These products usually are not interchangeable. Confectioners sugar is made up of much finer particles than granulated sugar, and it contains a small amount of cornstarch to prevent caking.

Can I make powdered sugar at home?
Yes! Blend 1 cup of white sugar and 1 tablespoon of cornstarch to get 1 cup of powdered sugar.
References

How Well Do You Know Sugar?

9 misunderstandings about SUGAR

MYTH
Sugar is hidden in food.

FACT
For the past three decades sugar has been found on the ingredient list of many foods and beverages. And for good reason. Unless you cook a lot from scratch, you may not be familiar with all of the functional roles that sugar plays in so many products. Sugar is so much more than the sweet taste we know so well.

Sugar has many functional properties that range from balancing acidity (like in salad dressing and sauces) to preventing spoilage (like in breads, canned vegetables and prepared foods). While sugar may be added to foods for reasons you may not expect, sugar isn’t hidden in foods. The food labels on the back (or side) of the pack always show the list of ingredients (in descending order of weight) and soon all products will also include both the total sugars and added sugars content on the Nutrition Facts Panel.

MYTH
“Reduced sugar” always means reduced calories.

FACT
When sugar is removed from a food, there are new ingredients (usually more than one) that need to take its place to replace both the flavor and functionality of sugar. These ingredients often bring the same or even more calories to a product than sugar does. So, before you think less sugar means fewer calories, compare product labels to see what the entire nutrient package of a product is.

Because of the many functional roles sugar can play in a product, reducing sugar in a food product often isn’t as simple as just cutting the sugar in the recipe. For example, sugar may be added to a cereal to mask the bitter taste of fiber or added vitamins, increase bulk and lengthen the shelf life. Several ingredients will need to be added to replace all of those functions if you take the sugar out.
FACT

You can actually extract sugar at home. Sugar is simply removed from the plant, washed, crystallized and dried. The same sugar found naturally in the plant is what ends up in your pantry.

Whether sugar comes from sugar beets or sugar cane, the purification process is similar for each plant and the result is the same pure sucrose. In both cases, sugar juice is separated from the plant material, crystallized and dried to produce the sugar we find in our pantries. Just a few simple steps from plant to final product!

MYTH

“Raw” sugar is healthier than table sugar.

FACT

Your body handles sugar the same regardless of what color it comes in. Raw sugars, brown sugars and any white sugars are all processed the same in the body. Darker colors are due to varying but small amounts of molasses left on the sugar crystals. The nutrients that are contained in this amount of molasses are so small that they offer no real nutritional value.

Sugar has only 15 calories per teaspoon
MYTH
Sugar is a high glycemic food.

FACT
Sugar has a moderate impact on blood glucose, similar to that of wheat bread.

Glycemic index (GI) is a measure of how quickly the starches and sugars in a food or beverage are broken down to glucose and released into the bloodstream after a food or beverage is consumed. The GI of sugar is 65, falling in the moderate GI range of 56-69. High glycemic foods have a GI of 70 or more. Simply put, sugar ranks somewhere in the middle of carbohydrate foods when it comes to raising blood glucose.1

MYTH
Americans consume more added sugars now than ever.

FACT
USDA data show that added sugars intake decreased by more than 15% from 2000 to 2017.

While added sugars consumption increased sharply in the 1990s, consumption has been on a significant decline for the past 20 years.1 In 2015-2016, added sugars consumption was reported to be 12.6% of total calories, or around 270 calories per day.14 This is still slightly above the 2015-2020 Dietary Guidelines for Americans recommendation of 10% of calories from added sugars per day.15

MYTH
Sugar causes chronic diseases such as obesity, diabetes and heart disease.

FACT
Excess calories from all food and beverages, including sugars, can lead to weight gain, increasing the risk of obesity and other chronic diseases but research does not show a direct link between sugar and any of these conditions.

Scientific evidence consistently shows that a healthy lifestyle based on moderation, a variety of food choices and physical activity tends to lead to the best outcomes when compared to simply focusing on cutting out or adding an ingredient or another; it does not support adverse outcomes of sugar intake when sugar is consumed in moderation and as part of a diet where calories are not eaten in excess.6,7,8,9,10

The Sugar Association | 9 Misunderstandings About Sugar
MYTH

Sugar is addictive.

All that science tells us is that sugar tastes good and people like eating food that tastes good. Eating something you enjoy increases dopamine in the same way all pleasurable experiences do but addiction and pleasure are not the same thing.

Scientific evidence does not support the idea that sugar (or any other foodstuff) can be addictive.\(^1\)\(^,\)\(^2\)\(^,\)\(^3\) There are many factors involved in choosing to eat with psychological and behavioral components not to be overlooked. Certain foods and drinks of course can be pleasurable to consume, but it’s important not to confuse this with clinical addiction.

FACT

Sugar is toxic.

Sugar is an abundant carbohydrate produced by plants and made up of units of glucose and fructose. Glucose is found in all plant foods and fructose is most abundantly found in fruits. There is no mystery to what sugar is. We do know that it is a sweet energy source that is safe, especially when enjoyed in moderation.

While too much of anything can be bad, sugar (sucrose), whether intact in fruits and vegetables or in the popular extracted and crystallized form, has been safely incorporated in the diets of humans throughout all of time. The essential role of carbohydrates, including sugar, as an important source of fuel for the body is nothing new. In fact, glucose (a product of carbohydrate digestion) is essential to the function of the central nervous system.

Visit sugar.org to learn more about sugar

<table>
<thead>
<tr>
<th>SWEETENERS you might find in your food</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are many different sweeteners in our food supply today that might be used as an alternative to table sugar. Here is some basic information about some of the most popular caloric, low- and non-caloric sweeteners, including real sugar as a comparison.</td>
</tr>
</tbody>
</table>

CALORIC

<table>
<thead>
<tr>
<th>Sweetener</th>
<th>Source</th>
<th>Calories per teaspoon</th>
<th>Gl</th>
<th>Sweetness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>Sugar beet and sugar cane plants</td>
<td>15</td>
<td>Moderate</td>
<td>Standard for sweetness</td>
</tr>
<tr>
<td>Agave</td>
<td>Agave Plant</td>
<td>21</td>
<td>High</td>
<td>30%-40% sweeter</td>
</tr>
<tr>
<td>Brown Rice Syrup</td>
<td>Rice</td>
<td>16</td>
<td>High</td>
<td>30% less sweet</td>
</tr>
<tr>
<td>Coconut Sugar</td>
<td>Flower of the coconut plant</td>
<td>15</td>
<td>Low</td>
<td>Equal sweetness</td>
</tr>
<tr>
<td>Date Sugar</td>
<td>Dates</td>
<td>11</td>
<td>Low</td>
<td>Less sweet</td>
</tr>
<tr>
<td>Dextrose</td>
<td>Corn or Wheat</td>
<td>16</td>
<td>High</td>
<td>25% less sweet</td>
</tr>
<tr>
<td>Fruit Juice Concentrate</td>
<td>Fruit varieties</td>
<td>~16</td>
<td>Unknown</td>
<td>Less sweet</td>
</tr>
<tr>
<td>High Fructose Corn Syrup (HFCS)</td>
<td>Corn</td>
<td>17</td>
<td>Moderate</td>
<td>120-160 times sweeter</td>
</tr>
<tr>
<td>Honey</td>
<td>Nectar collected by bees</td>
<td>20</td>
<td>Low ↔ High</td>
<td>variable</td>
</tr>
<tr>
<td>Maltodextrin</td>
<td>Corn or Wheat</td>
<td>15</td>
<td>High</td>
<td>10% as sweet</td>
</tr>
</tbody>
</table>

SUGARS:
- **Sucrose:** Sugar, fructose, glucose
- **Fructose:** 55-90%
- **Glucose:** 45-58%
- **Maltose:** 5-15%
- **Maltotriose:** 0-5%

GI:
- **Low:** <55
- **Moderate:** 55-70
- **High:** >70

NOTES
- While all green plants make sucrose through photosynthesis, sugar beet and cane plants make the greatest quantities of sugar.
- Production of sugar cane involves many steps, including cutting the plants, washing and boiling. It is then filtered, washed and crystallized to produce the sugar we find in our pantries.
- **Production:** After sugar beet and sugar cane plants are harvested, sugar is removed from the plant through crushing, cutting and boiling. It is then filtered, washed and crystallized to produce the sugar we find in our pantries.
- **Production:** The leaves of the plant are cut and crushed to extract the sap. The sap is filtered, heated and treated enzymatically to convert the fructans (not very sweet) to fructose and glucose.
- **Production:** Rice dextrin is produced by removing the hemicellulose, protein and lipid fractions from the brown rice. The rice dextrin then goes through further steps to convert polysaccharides to predominantly monosaccharides.
- **Production:** Made from powdering dried dates. Commercial varieties may have a flowing agent added (like oat flour) to help reduce clumping.
- **Production:** Dextrose is most commonly produced from cornstarch, though starch can come from any kind of plant. The process involved enzymatic breakdown of the starch polymers to single glucose units, which is similar to how our bodies breakdown starch.
- **Production:** Made by evaporating most of the water from the fruit puree, concentrating the natural sugar content.
- **Production:** Maltodextrin is produced by processing starch (most commonly corn), using acids or enzymes to break it down.

Texture and Help:
- Maltodextrin provides bulk and texture and helps blend ingredients together.
- Maltose blends tend to be a mix of different nectars to help ensure consistency and flavor.
- Commonly added to processed foods to provide bulk and texture and help blend ingredients together.

SWEETNESS COMPARED TO SUGAR

<table>
<thead>
<tr>
<th>Sweetener</th>
<th>Sweetness Compared to Sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>Equal sweetness</td>
</tr>
<tr>
<td>Agave</td>
<td>Less sweet</td>
</tr>
<tr>
<td>Brown Rice Syrup</td>
<td>Less sweet</td>
</tr>
<tr>
<td>Coconut Sugar</td>
<td>Less sweet</td>
</tr>
<tr>
<td>Date Sugar</td>
<td>Less sweet</td>
</tr>
<tr>
<td>Dextrose</td>
<td>Less sweet</td>
</tr>
<tr>
<td>Fruit Juice Concentrate</td>
<td>Less sweet</td>
</tr>
<tr>
<td>High Fructose Corn Syrup (HFCS)</td>
<td>Less sweet</td>
</tr>
<tr>
<td>Honey</td>
<td>More than sugar</td>
</tr>
<tr>
<td>Maltodextrin</td>
<td>More than sugar</td>
</tr>
</tbody>
</table>

NOTES
- GI ranges are dependent on where the honey has been collected. Commercial honey blends tend to be high (GI>70).
Sweeteners

SWEETENERS you might find in your food

<table>
<thead>
<tr>
<th>Caloric</th>
<th>Low-caloric</th>
<th>Non-caloric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maple Syrup</td>
<td>Molasses</td>
<td>Allulose</td>
</tr>
<tr>
<td>source: Sap of the maple tree</td>
<td>source: Sugar cane plant</td>
<td>source: Corn</td>
</tr>
<tr>
<td>SUGARS: Sucrose, glucose, fructose</td>
<td>SUGARS: Sucrose, glucose, fructose</td>
<td>SUGARS: Allulose</td>
</tr>
<tr>
<td>Calories per teaspoon: 17</td>
<td>Calories per teaspoon: 19</td>
<td>Calories per teaspoon: 1.6</td>
</tr>
<tr>
<td>GI: low</td>
<td>GI: moderate</td>
<td>GI: varies</td>
</tr>
</tbody>
</table>

Production

The maple tree is tapped so the sap can be collected in buckets that hang on the tree. The sap is then boiled to reduce the water content, concentrating the sugars.

Notes

Contains trace amounts of organic acids, vitamins and some minerals, however not a significant level.

<table>
<thead>
<tr>
<th>Sugar Alcohols</th>
<th>Acesulfame K</th>
<th>Aspartame</th>
<th>Neotame</th>
<th>Saccharin</th>
<th>Stevia</th>
<th>Sucralose</th>
</tr>
</thead>
<tbody>
<tr>
<td>source: Corn</td>
<td>source: N/A</td>
<td>source: N/A</td>
<td>source: N/A</td>
<td>source: N/A</td>
<td>source: Stevia plant</td>
<td>source: N/A</td>
</tr>
<tr>
<td>SUGARS: Glucose</td>
<td>SUGARS: N/A</td>
<td>SUGARS: N/A</td>
<td>SUGARS: N/A</td>
<td>SUGARS: N/A</td>
<td>SUGARS: N/A</td>
<td>SUGARS: N/A</td>
</tr>
<tr>
<td>Calories per teaspoon: 0-0.6</td>
<td>Calories per teaspoon: 0</td>
</tr>
<tr>
<td>GI: N/A</td>
</tr>
</tbody>
</table>

Calorie Free?

In order for tabletop sweeteners to be used like regular table sugar, they are often mixed with a bulking agent such as maltodextrin or erythritol. These bulking agents add just a few calories when you use these non-caloric sweeteners. One packet of Equal or Splenda contains 4 calories and the sweetness of two teaspoons of sugar.

Maple Syrup

- **Source:** Sap of the maple tree
- **Sugars:** Sucrose, glucose, fructose
- **Calories per teaspoon:** 17
- **GI:** Low

Molasses

- **Source:** Sugar cane plant
- **Sugars:** Sucrose, glucose, fructose
- **Calories per teaspoon:** 19
- **GI:** Moderate

Allulose

- **Source:** Corn
- **Sugars:** Allulose
- **Calories per teaspoon:** 1.6
- **GI:** Varies

Sugar Alcohols

- **Source:** Corn
- **Sugars:** Glucose
- **Calories per teaspoon:** 0-0.6
- **GI:** N/A

Acesulfame K

- **Source:** N/A
- **Sugars:** Glucose
- **Calories per teaspoon:** 0
- **GI:** N/A

Aspartame

- **Source:** N/A
- **Sugars:** N/A
- **Calories per teaspoon:** 0
- **GI:** N/A

Neotame

- **Source:** N/A
- **Sugars:** N/A
- **Calories per teaspoon:** 0
- **GI:** N/A

Saccharin

- **Source:** N/A
- **Sugars:** N/A
- **Calories per teaspoon:** 0
- **GI:** N/A

Stevia

- **Source:** Stevia plant
- **Sugars:** N/A
- **Calories per teaspoon:** 0
- **GI:** N/A

Sucralose

- **Source:** N/A
- **Sugars:** N/A
- **Calories per teaspoon:** 0
- **GI:** N/A

SWEETNESS COMPARED TO SUGAR

<table>
<thead>
<tr>
<th>Slightly less sweet</th>
<th>25-50% less sweet</th>
<th>70% as sweet</th>
<th>30-100% as sweet</th>
<th>200 times sweeter</th>
<th>150-250 times sweeter</th>
<th>200-400 times sweeter</th>
<th>8,000 times sweeter</th>
<th>300-500 times sweeter</th>
<th>200 times sweeter</th>
<th>400-600 times sweeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 times sweeter</td>
<td>150-250 times sweeter</td>
<td>200-400 times sweeter</td>
<td>8,000 times sweeter</td>
<td>300-500 times sweeter</td>
<td>200 times sweeter</td>
<td>400-600 times sweeter</td>
<td>200 times sweeter</td>
<td>400-600 times sweeter</td>
<td>200 times sweeter</td>
<td>400-600 times sweeter</td>
</tr>
</tbody>
</table>

Notes

When combined with maltodextrins (used as bulking agents) there is a small contribution to energy. It is also stable in heat, so can be used in baking. Brand name Splenda.
Let’s start with the basics. Sugars are the simplest type of carbohydrate. They are easily digested and absorbed by the body. Sugars provide calories, or energy, for the body. Each gram of sugar provides 4 calories.

In the body, sugars are broken down into glucose.
- Glucose in the blood (often called “blood sugar”) is the primary source of energy for the body.
- Glucose can be used immediately or stored in the liver and muscles for later use.

In foods and beverages, sugars are used to sweeten, preserve, and improve other attributes like texture, color and browning capability.

Sugars that contain one molecule (monosaccharides) are small enough to be absorbed directly into the bloodstream. Sugars that contain two molecules of sugar linked together (disaccharides) are broken down in your body into single sugars before absorption. Polysaccharides are longer chains of monosaccharides (more than 10) and are also broken down in the body.

Sugars are found naturally in all plant and dairy foods and beverages and are also added to foods and beverages for taste, texture and preservation. These sugars that are added to foods and beverages during the processing of foods are considered ADDED SUGARS as defined by the FDA. Added sugars do not include low- and non-caloric sweeteners.

Carbohydrates, along with fat and protein, are macronutrients that provide the body with energy.

The term “added sugars” was defined by the Food and Drug Administration (FDA) in 2016 as: sugars that are added during the processing of foods, or are packaged as such, and include sugars (free, mono- and disaccharides), sugars from syrups and honey, and sugars from concentrated fruit or vegetable juices that are in excess of what would be expected from the same volume of 100 percent fruit or vegetable juice of the same type.

Some specific examples of FDA’s definition of added sugars include:
- agave nectar
- brown rice syrup
- brown sugar
- confectioner’s powdered sugar
- coconut sugar
- corn syrup
- dextrose
- fructose*
- glucose*
- high-fructose corn syrup
- honey
- invert sugar
- lactose*
- malt syrup
- maltose*
- maple sugar
- molasses
- nectars (e.g. peach nectar, pear nectar)
- raw sugar
- rice syrup
- sucrose*
- sugar
- white granulated sugar

*also naturally occurring sugars founds in whole foods

The Dietary Guidelines for Americans recommend limiting added sugars to no more than 10% of calories.1 This is a target to help individuals move toward healthy eating patterns within calorie limits.

In the past 15 years, added sugars intake in the United States has decreased by nearly 25%, from 21 teaspoon equivalents per day to 16.1 teaspoon equivalents per day.1

Calorically sweetened beverages such as soft drinks, tea and fruit drinks are the main source of added sugars in the diet across all age groups (older than 2 years), making up almost half of added sugars calories.2 While these beverages continue to be the largest contributor to added sugars intakes, there has recently been a significant decline in calorically sweetened beverage consumption since 1999.3

In 2016, added sugars was reported to be about 12.6% of total calories, just slightly above the 2015-2020 Dietary Guidelines for Americans recommendation of 10% of calories from added sugars per day.1,2,4

Added sugars are found in a variety of foods and beverages for different reasons, many times for functions beyond sweetness.

PERCENT OF CALORIES FROM ADDED SUGARS1,3,5

<table>
<thead>
<tr>
<th>YEAR</th>
<th>% OF CALORIES FROM ADDED SUGARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-2000</td>
<td>18.1</td>
</tr>
<tr>
<td>2001-2002</td>
<td>17.1</td>
</tr>
<tr>
<td>2003-2004</td>
<td>15.9</td>
</tr>
<tr>
<td>2005-2006</td>
<td>14.5</td>
</tr>
<tr>
<td>2007-2008</td>
<td>14.6</td>
</tr>
<tr>
<td>2009-2010</td>
<td>13.9</td>
</tr>
<tr>
<td>2011-2012</td>
<td>14.1</td>
</tr>
<tr>
<td>2013-2014</td>
<td>13.4</td>
</tr>
<tr>
<td>2015-2016</td>
<td>12.6</td>
</tr>
</tbody>
</table>

BREAKING DOWN THE NUMBERS

SUGAR SERVING SIZE

- 2 teaspoons in a serving
- 30 calories in a serving
- 8 grams in a serving
- 15 calories in a teaspoon
- 4 grams in a teaspoon
- 4 calories per gram

INTAKE RECOMMENDATIONS

According to the 2015-2020 Dietary Guidelines for Americans,4 a healthy diet includes up to 10% of calories from added sugars, allowing room for sugars in nutritious foods and occasional sweets and treats. In a 2000 calorie diet this equates to 200 calories, 50 grams, or 12.5 teaspoons.
In the 1990s, added sugars consumption increased sharply as soda consumption increased and manufacturers raced to reformulate and develop new products during the “low-fat era.” Removing fat from a product requires replacing it with something. The same is true of removing sugar. Data has shown the seesaw effect of restricting individual nutrients only leads to caloric over compensation with another, whether sugar for fat or vice-versa.6,7

HOWEVER – since 1999 added sugars consumption has been on a significant decline in the United States.1,2,5

WHERE DO THESE NUMBERS COME FROM?

What We Eat in America (WWEIA) captures U.S. dietary intakes as a part of National Health and Nutrition Examination Survey (NHANES). This survey is conducted every two years in partnership with the United States Department of Agriculture (USDA) and Health and Human Services (HHS) to assess the health and nutritional status of Americans.

Loss-Adjusted Food Availability is another proxy for estimating intake. This number is calculated using food and nutrient availability for consumption and considers estimated loss or waste. The downward trend in availability mirrors the NHANES consumption estimates.

TYPES OF SUGARS

All sugar is made by first extracting sugar juice from sugar beet or sugar cane plants, and from there many types of sugar can be produced. Through slight adjustments in the process of cleaning, crystallizing and drying the sugar and varying the level of molasses, different sugar varieties are possible. Sugars of varying crystal sizes produce unique functional characteristics that make the sugar suitable for different foods and beverages. Sugar color is primarily determined by the amount of molasses remaining on or added to the crystals, giving pleasurable flavors and altering moisture. Heating sugar also changes the color and flavor (yum, caramel!). Some types of sugar are used only by the food industry and are not available in the supermarket.

See below for a few facts about some of the various types of sugar.

<table>
<thead>
<tr>
<th>WHITE SUGARS</th>
<th>BROWN SUGARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulated sugar (Table sugar)</td>
<td>Light and Dark Brown sugar</td>
</tr>
<tr>
<td>+ “Regular” or granulated sugar is what you typically find in your sugar bowl</td>
<td>+ Brown sugars are made by mixing white sugar with various amounts of molasses</td>
</tr>
<tr>
<td>+ Granulated sugar is the most common sugar called for in recipes when cooking and baking</td>
<td>+ Light brown sugar is often used in sauces and most baked goods</td>
</tr>
<tr>
<td>+ “Regular” sugar granules are fine because small crystals are ideal for bulk handling and not susceptible to caking</td>
<td>+ Dark brown sugar has a deeper color and stronger flavor than light brown sugar. The rich, full flavor makes it ideal for gingerbread, baked beans, barbecuing and other full-flavored foods</td>
</tr>
<tr>
<td>Powdered sugar</td>
<td>Brown sugars tend to clump because they contain more moisture than white sugars, allowing baked goods to retain moisture well and stay chewy</td>
</tr>
<tr>
<td>+ Powdered or confectioners sugar is simply granulated sugar ground to a smooth powder, mixed with a small amount of cornstarch to prevent caking and then sifted</td>
<td>Turbinado sugar</td>
</tr>
<tr>
<td>+ Powdered sugar is often used in icings, confections and whipping cream</td>
<td>+ Turbinado sugar, sometimes known as Demerara sugar or Raw cane sugar, is a partially processed sugar which retains more of the naturally present molasses</td>
</tr>
<tr>
<td>+ You can make it at home: blend 1 cup white sugar and 1 tablespoon cornstarch to get 1 cup of powdered sugar</td>
<td>+ It has a blond color, mild brown sugar flavor and larger crystals than brown sugars used in baking</td>
</tr>
<tr>
<td>Sanding sugar</td>
<td>+ Turbinado sugar is the sugar in your packet of “raw cane sugar.” This type of sugar has been processed just enough to make it safe to eat</td>
</tr>
<tr>
<td>+ Used mainly in baking and confectionery as a sprinkle on top of baked goods, sanding sugar can have large or fine crystals</td>
<td>Muscovado sugar</td>
</tr>
<tr>
<td>+ This sugar reflects light and gives the products a sparkling appearance</td>
<td>+ Muscovado sugar, also known as Barbados sugar, is an unrefined cane sugar in which the molasses has not been removed</td>
</tr>
<tr>
<td></td>
<td>+ This sugar is very dark brown in color and has a particularly strong molasses flavor</td>
</tr>
<tr>
<td></td>
<td>+ Muscovado sugar crystals are slightly coarser and stickier than regular brown sugar, giving it a sandy texture</td>
</tr>
</tbody>
</table>
WHERE IN THE U.S. does sugar come from?

6 Quick Facts

1. Sugar is grown and/or refined in 17 states across the U.S.

2. Sugar beets grow best in places where the temperatures are generally cooler.

3. At sugar beet factories and sugar cane refineries across the country, the sugar from the plants is purified into the sugar shipped to grocery stores and food manufacturers.

4. Sugar cane is grown in warmer, tropical climates.

5. Sugar beet factories are located near the farms to shorten the distance farmers need to travel with their beets.

6. Some raw cane sugar is also imported to the U.S. for refining.
SUGAR BEET PROCESSING

1. Harvest the sugar beets
2. Wash, slice and soak the beets to extract the juice and separate it from the plant material
3. Clean the juice to remove impurities and extra color to produce sugar syrup
4. Crystallize the sugar from the sugar syrup
5. Spin the crystals in a centrifuge to remove liquid
6. Dry the sugar crystals
7. Package the sugar for distribution
1. Harvest the sugar cane
2. Crush, soak and squeeze the cane to extract the juice and separate it from the plant material
3. Boil the juice until the syrup thickens and crystallizes
4. Spin the crystals in a centrifuge to remove liquid and produce raw sugar. Raw sugar is an intermediate product of sugar cane refining. It is not food grade as it still contains molasses and impurities.
5. Transport the raw sugar to a refinery to remove impurities
6. Melt the raw sugar and filter the remaining impurities and extra color to produce sugar syrup
7. Crystallize the sugar from the sugar syrup
8. Dry the sugar crystals
9. Package the sugar for distribution
<table>
<thead>
<tr>
<th>Food Category</th>
<th>Flavor Enhancer/Balancer, Aroma</th>
<th>Bulk</th>
<th>Texture/Mouthfeel</th>
<th>Shelf-Life/Microbial Stability</th>
<th>Fermentation</th>
<th>Freezing Point Depression</th>
<th>Color</th>
<th>Moisture Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy Products</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole-Grain, Fiber-Rich Breads & Cereals</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breads</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakery Products</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salad Dressings, Rubs and Sauces</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preserves & Pickling</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jams & Jellies</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canned Fruits & Vegetables</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepared Foods</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beverages</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frozen Beverages</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fermented Beverages</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice Cream</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confectionery</td>
<td>![Green Icon]</td>
<td></td>
<td>![Yellow Icon]</td>
<td>![Green Icon]</td>
<td>![Green Icon]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WHAT IS MOLASSES?

MOLASSES IS A CO-PRODUCT OF SUGAR REFINING AND PROCESSING.

Molasses, the thick, dark brown syrup you might buy at the grocery store, is found naturally in sugar beet and sugar cane plants. During the refining process, it is separated from the sugar crystals by spinning the sugar in a centrifuge.

Molasses is not as sweet as sugar but is used in many recipes for its rich flavor and moisture. Sugar beet molasses and sugar cane molasses have different flavors and consistencies and are not used interchangeably. Sugar cane molasses is primarily used for sweetening and flavoring foods while sugar beet molasses is not very sweet and is primarily used for animal feed and other commercial and industrial uses.

Sugar is a minimally processed ingredient. It is simply removed from the plant, washed, crystallized, spun and dried. The spinning step is where the molasses is separated from the sugar crystals.

Food Uses of Molasses
- Key ingredient in the distillation of rum
- Dark rye breads or other whole grain breads
- Cookies and pies
- Gingerbread
- Barbecue sauces
- Beer styles such as stouts and porters
- Home-made vinaigrette
- Jerky Processing
- Yeast production

Industrial Uses of Molasses
- Ingredient in animal feed
- Fermentation source in the production of ethanol and other chemicals
- Industrial production of vinegar and citric acid
- Mixed with salt to de-ice roads
- Added to soil to promote microbial activity
- Minor component of mortar for brickwork

Molasses comes in a variety of levels of sweetness, from the sweet and moderate flavor of confectionery/all-purpose molasses to the strong-flavored blackstrap molasses.

Real sugar comes from sugar beets and sugar cane plants.
SUGAR REFORMULATION: COMMONLY USED INGREDIENTS

Efforts to reduce or remove sugar from foods and beverage products require reformulation. No single ingredient can replace real sugar’s flavor and function; when sugar is removed, often several ingredients are added. Ingredients commonly used to replace one or more functions of sugar in products are shown below. It’s important to note that none of these ingredients are declared as added sugars on the Nutrition Facts Label and can only be found on the ingredient list. For reference, sugar is also included below.

<table>
<thead>
<tr>
<th>INGREDIENT</th>
<th>CALORIES</th>
<th>SWEETNESS COMPARED TO SUGAR</th>
<th>SOURCE/PRODUCTION</th>
<th>FUNCTION</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>4</td>
<td>Standard for sweetness</td>
<td>Extracted from sugar beet and sugar cane plants.</td>
<td></td>
<td>Used in foods and beverages for a variety of functional purposes.</td>
</tr>
</tbody>
</table>

SUGAR ALCOHOLS (POLYOLS)

<table>
<thead>
<tr>
<th>INGREDIENT</th>
<th>CALORIES</th>
<th>SWEETNESS COMPARED TO SUGAR</th>
<th>SOURCE/PRODUCTION</th>
<th>FUNCTION</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythritol</td>
<td>0</td>
<td>70% as sweet</td>
<td>Produced by fermentation of cornstarch.</td>
<td></td>
<td>Commonly used in low-sugar and sugar-free foods.</td>
</tr>
<tr>
<td>Hydrogenated Starch Hydrolysate (mixture of sugar alcohols)</td>
<td>3</td>
<td>20-50% as sweet</td>
<td>Produced by the partial hydrolysis of starch, corn being the most prominent source.</td>
<td></td>
<td>Used in low-sugar and sugar-free foods.</td>
</tr>
<tr>
<td>Isomalt</td>
<td>2</td>
<td>50% as sweet</td>
<td>Manufactured from sucrose, the fructose portion of the glucose-sucrose bond is converted to equal parts sorbitol and mannitol.</td>
<td></td>
<td>Used in hard and soft candies, chocolate, ice cream, jams and jellies, baked goods, fillings and fondants, chewing gum and cough drops.</td>
</tr>
<tr>
<td>Maltitol</td>
<td>2.1</td>
<td>70-90% as sweet</td>
<td>Manufactured through hydrogenation of maltose derived from cornstarch.</td>
<td></td>
<td>Used in hard and soft candies, jams and jellies, baked goods, baking mixes, chewing gum and cough drops.</td>
</tr>
<tr>
<td>Mannitol</td>
<td>1.6</td>
<td>50-70% as sweet</td>
<td>Widespread in nature, it is commercially manufactured from fructose (from cornstarch) through hydrogenation.</td>
<td></td>
<td>Used in hard and soft candies, jams and jellies, frostings, chewing gum and cough drops.</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>2.6</td>
<td>60% as sweet</td>
<td>Small amounts are present in some fruits. Commercially it is manufactured by hydrogenating dextrose (from cornstarch).</td>
<td></td>
<td>Used in hard and soft candies, jams and jellies, baked goods, baking mixes, chewing gum and cough drops.</td>
</tr>
<tr>
<td>Xylitol</td>
<td>2.4</td>
<td>Equal sweetness</td>
<td>Can be extracted from the bark of birch trees. Commercially it is produced from corn.</td>
<td></td>
<td>Has a pronounced mint flavor. Used in chewing gums, candies, pharmaceuticals, toothpastes and mouthwashes.</td>
</tr>
<tr>
<td>INGREDIENT</td>
<td>SWEETNESS</td>
<td>SOURCE/PRODUCTION</td>
<td>FUNCTION</td>
<td>APPLICATION</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Non-caloric sweeteners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acesulfame K</td>
<td>0 calories/gram</td>
<td>200x sweeter A potassium salt, made by combining acetoacetic acid and potassium.</td>
<td></td>
<td>Widely used. Found in foods, beverages, oral hygiene and pharmaceutical products. Often mixed with Aspartame.</td>
<td></td>
</tr>
<tr>
<td>Advantame</td>
<td>0 calories/gram</td>
<td>20,000x sweeter Chemical composition of Aspartame and vanillin.</td>
<td></td>
<td>Used in processed foods and cooking.</td>
<td></td>
</tr>
<tr>
<td>Allulose</td>
<td>0.4 calories/gram</td>
<td>70% as sweet A “rare sugar” naturally present in wheat, figs and raisins.</td>
<td></td>
<td>Used in beverages, baked goods and frostings, yogurt, frozen dairy desserts, salad dressings, jams and jellies, chewing gum, candies, sauces and syrups, gelatins and fat-based cream used in modified fat/calorie cookies.</td>
<td></td>
</tr>
<tr>
<td>Aspartame</td>
<td>4 calories/gram</td>
<td>150-250x sweeter Aspartame is a methyl ester of aspartic acid/phenylalanine dipeptide. Typically aspartame is made through chemical synthesis.</td>
<td></td>
<td>Ubiquitous. Used in sodas, cookies, chewing gum, mints and diet products. Not heat stable. Individuals with Phenylketonuria (PKU) should avoid consuming aspartame.</td>
<td></td>
</tr>
<tr>
<td>Monk fruit</td>
<td>0 calories/gram</td>
<td>200-400x sweeter Monk fruit mogrosides are extracted by crushing, adding water, filtering and spray drying.</td>
<td></td>
<td>Used in low-sugar and sugar-free foods and beverages.</td>
<td></td>
</tr>
<tr>
<td>Neotame</td>
<td>0 calories/gram</td>
<td>8,000x sweeter A derivative of the amino acids phenylalanine and aspartic acid.</td>
<td></td>
<td>Used in baked goods, beverages, candies, chewing gum, dairy products, frozen desserts, puddings and yogurts, and as a tabletop sweetener.</td>
<td></td>
</tr>
<tr>
<td>Saccharin</td>
<td>0 calories/gram</td>
<td>300-500x sweeter Saccharin is a sodium salt, made through the oxidation of 0-toluensulfanamide and/or phthalic anhydride.</td>
<td></td>
<td>Used in a wide range of diet foods and beverages including soft drinks, baked goods, jams, canned fruit, sweets and salad dressings. Also used in personal care products, pharmaceuticals and vitamins.</td>
<td></td>
</tr>
<tr>
<td>Stevia (Stevioside and Rebaudioside A)</td>
<td>0 calories/gram</td>
<td>200x sweeter Stevia leaves are boiled, passed through a resin and washed in alcohol to release the glycosides, which provide the sweet taste. The glycosides are then recrystallized. Stevioside and Rebaudioside A (or Reb A) are common steviol glycosides.</td>
<td></td>
<td>Used in soft drinks, candies, chocolate, chewing gum, ice cream, yogurt, jams and puddings, and as a tabletop sweetener. Stevia consumer products are often mixed with erythritol or sugar, in some cases 99% of the product is erythritol.</td>
<td></td>
</tr>
<tr>
<td>Sucralose</td>
<td>0 calories/gram</td>
<td>400-600x sweeter Manufactured through chlorination of sucrose in a multistep process.</td>
<td></td>
<td>Ubiquitous. Used worldwide in over 4,000 foods and drinks such as no-sugar-added fruit, diet soft drinks and reduced sugar juices.</td>
<td></td>
</tr>
</tbody>
</table>
Fibers

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Calories</th>
<th>Sweetness Compared to Sugar</th>
<th>Source/Production</th>
<th>Function</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fructooligosaccharides (chicory root)</td>
<td>1.5-2 calories/gram</td>
<td>30% as sweet</td>
<td>Found in many different plants, most commonly extracted from chicory root or blue agave. Can also be made through chemical processes.</td>
<td></td>
<td>Use to replace part of the sugar in reduced calorie foods and beverages. Also have a prebiotic effect.</td>
</tr>
<tr>
<td>Inulin (chicory root)</td>
<td>1.5 calories/gram</td>
<td>10% as sweet</td>
<td>Found in many different plants, most commonly extracted from chicory roots. Can also be synthesized from sucrose.</td>
<td></td>
<td>Widely used in functional foods.</td>
</tr>
<tr>
<td>Isomalto-oligosaccharide (IMO)</td>
<td>2 calories/gram</td>
<td>50% as sweet</td>
<td>Found naturally in some fermented foods and can also be manufactured commercially from starch from cereal crops.</td>
<td></td>
<td>Mainly used in protein and health bars.</td>
</tr>
<tr>
<td>Oligofructose</td>
<td>1.5 calories/gram</td>
<td>30-50% as sweet</td>
<td>Found in many different plants, most commonly derived from hydrolysis of inulin derived from chicory roots. Can also be synthesized from sucrose by transfructosylation.</td>
<td></td>
<td>Widely used in functional foods and reduced-sugar foods and beverages. Can mask aftertaste of high intensity sweeteners.</td>
</tr>
<tr>
<td>Polydextrose</td>
<td>1 calorie/gram</td>
<td>Much less sweet</td>
<td>Does not occur in nature. Synthesized from glucose, sorbitol and citric acid.</td>
<td></td>
<td>Used as a replacement for sugar, starch and fat in diet and “diabetic friendly” processed foods such as candy, frozen desserts, cultured dairy products, baked goods, nutrition bars, fruit spreads and fillings.</td>
</tr>
</tbody>
</table>

Preservatives

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Calories</th>
<th>Sweetness</th>
<th>Source/Production</th>
<th>Function</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoates</td>
<td>N/A</td>
<td>N/A</td>
<td>Occur naturally in many foods. Produced industrially by the neutralization of benzoic acid.</td>
<td></td>
<td>Most widely used in acidic foods such as salad dressings, carbonated drinks, jams, pickles and condiments.</td>
</tr>
<tr>
<td>Sorbate</td>
<td>N/A</td>
<td>N/A</td>
<td>Produced industrially by neutralizing sorbic acid with potassium hydroxide.</td>
<td></td>
<td>Used in cheese, wine, yogurt, dried meats, rehydrated fruits, soft drinks, fruit drinks and baked goods. Also used by fast-food restaurants.</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Calories</th>
<th>Sweetness</th>
<th>Source/Production</th>
<th>Function</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colors</td>
<td>N/A</td>
<td>N/A</td>
<td>Can be natural (plant-based) or artificial.</td>
<td></td>
<td>Ubiquitous.</td>
</tr>
<tr>
<td>Flavorings</td>
<td>N/A</td>
<td>N/A</td>
<td>Can be natural or artificial.</td>
<td></td>
<td>Ubiquitous.</td>
</tr>
<tr>
<td>Glycerol (glycerin)</td>
<td>4 calories/gram</td>
<td>40% as sweet</td>
<td>Produced by hydrolysis, saponification or transesterification of triglycerides occurring in plants, most commonly soybeans.</td>
<td></td>
<td>Used as a food ingredient for its low GI (diabetic products). No special application for calorie control.</td>
</tr>
<tr>
<td>Hydrocolloids</td>
<td>0-3.3 calories/gram</td>
<td>N/A</td>
<td>Can be isolated from plants or animals, obtained by fermentation or plant-derived and chemically modified.</td>
<td></td>
<td>Widely used as thickening and gelling agents. Xanthan gum and guar gum are examples.</td>
</tr>
</tbody>
</table>
References:

BACKGROUND
The Food and Drug Administration (FDA) designed the Nutrition Facts Label to serve as an informational tool to assist consumers in constructing a healthy, balanced diet. The first label debuted in 1994. Before that, nutrition facts on packages didn’t exist! In January 2020, the label underwent its first makeover and, among other changes, now includes information on added sugars.

BREAKING DOWN THE SUGARS TERMINOLOGY
While the FDA recognizes the body handles sugars the same way, regardless of whether they are added or naturally occurring, added sugars are included on the Nutrition Facts label to help consumers follow the Dietary Guidelines for Americans target of consuming up to 200 calories or 10% of total calories per day of added sugars.2

What are Total Sugars?
Total Sugars is the sum of all sugars in a product. This includes sugars naturally present in many nutritious foods and beverages, such as sugars in milk and fruit, as well as any sugars that are added to a product like sugars added to cereal.

What are Added Sugars?
The FDA defines added sugars as those sugars that are added to foods during processing or sugars packaged for consumers to add to foods and beverages on their own (like table sugar, brown sugar, pancake syrup, etc.). Added sugars do not include naturally occurring sugars that are found in milk, fruits, and vegetables or low and non-caloric sweeteners.

Not a significant source of vitamin D, calcium, iron, and potassium
*The % Daily Value (DV) tells you how much a nutrient in a serving of food contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.

Some specific examples of FDA’s definition of added sugars include:
- agave nectar
- brown rice syrup
- brown sugar
- coconut sugar
- concentrated fruit or vegetable juice
- confectioner’s powdered sugar
- corn syrup
- dextrose
- fructose*
- glucose*
- high-fructose corn syrup
- honey
- invert sugar
- lactose*
- malt syrup
- maltose*
- maple sugar
- molasses
- nectars (e.g. peach nectar, pear nectar)
- raw sugar
- rice syrup
- sucrose*
- sugar*
- white granulated sugar
*also naturally occurring sugars found in whole foods

Real sugar comes from sugar beets and sugar cane plants.

WHAT’S NOT ON THE NUTRITION FACTS LABEL
There are many different alternative sweeteners used in foods and beverages and you won’t find them on the label— they are only found in the ingredients list. Here are some examples of common low- and non-caloric sweeteners to look for:
- acesulfame k
- allulose
- aspartame
- monk fruit
- neotame
- saccharin
- stevia
- sucralose
- sugar alcohols (erythritol, hydrogenated starch hydrolysate, isomalt, maltitol, mannitol, sorbitol, xylitol)
- tagatose
Making Sense of Low Sugar Claims

Many packaged foods and beverages contain claims on the front of the package. Manufacturers can’t just make these up! The FDA defines what these claims mean. Below are some examples of claims related to sugar and what they mean.

Sugar free, free of sugar, no sugar, zero sugar, without sugar, sugarless

Product contains less than 0.5 grams of sugars per serving.

No added sugar, without added sugar, or no sugar added

No amount of sugars or any other ingredient that contains sugars that functionally substitute for added sugars is added to the product during processing or packaging.

Reduced sugar, reduced in sugar, sugar reduced, less sugar, lower sugar, or lower in sugar

Product contains at least 25% less sugar per serving than an appropriate reference food.

What is Daily Value?

A Daily Value is the reference amount for consumption of a nutrient over the course of an entire day. On the Nutrition Facts Label, most nutrients have a % Daily Value listed next to the amount of the nutrient in a serving. The % Daily Value indicates how one serving of that product contributes to the total day’s intake for each nutrient.

• For added sugars, the Daily Value is 50 grams per day, or 10% (200 calories) of a 2,000 calorie diet. The Daily Value for added sugars is based on the Dietary Guidelines for Americans target for added sugars consumption.

• There is no Daily Value for total sugars because a recommended intake has not been established.

The % Daily Value also provides regulatory definitions to determine if products are “Low” or “High” in a nutrient.

• 5% DV or less is considered a LOW source
• 20% DV or more is considered a HIGH source

Note: Even if a single product is high or low in a nutrient, it is just one piece of the whole day’s diet with other opportunities to get more or less of that nutrient throughout a day.

Dietary Guidelines for Americans

The Dietary Guidelines for Americans2 states that added sugars can be included as part of an overall healthy dietary pattern that includes healthy choices from each of the MyPlate food groups. The Dietary Guidelines for Americans set a target for Americans to consume no more than 10% of calories per day from added sugars because intakes above this can make it difficult to achieve nutrient and food group recommendations within 2,000 calories.

The Sugar Association believes that sugar intake should be one of balance, with primary focus placed on consuming nutrient-rich foods, appropriate total calories and an overall healthy lifestyle. The Dietary Guidelines suggest a target intake of added sugars of up to 10% of total calories. This recommendation is intended to help individuals construct a balanced diet that does not exceed their calorie needs and, it should be noted that, this target is not based on adverse health outcomes. Individuals may find the added sugars target and other Dietary Guidelines recommendations useful information for achieving a balanced lifestyle.

WHO WE ARE

The Sugar Association is the scientific voice of the sugar industry. We represent sugar beet and sugar cane growers, processors and refiners throughout the United States. These are the family farmers who plant, harvest and care for the sugar beets and sugar cane; the truck drivers who move the crops from the fields; the employees who work in the mills, processing plants and refineries that extract, purify and package sugar – all the people who work to get sugar from the farms to your table.

Our members account for over 90% of sugar (sucrose) production in the United States and the U.S. sugar industry overall generates 142,000 jobs in 22 states and contributes $20 billion to the economy annually.

Founded in 1943, the association’s mission is to monitor nutrition science, provide science-based information on sugar to consumers and health professionals and ensure that federal nutrition and food policy regarding sugar is based on the preponderance of scientific evidence. The foundation of our efforts to support and promote sugar in moderation as a safe and useful part of a balanced diet and healthful lifestyle is grounded in the totality of high-quality scientific evidence.

WE TELL SUGAR’S STORY BY:

Sharing the facts
We’re here to share our knowledge of sugar to help people understand the role sugar plays in a nutritious, balanced and enjoyable diet. But that’s not all. Professionals in education, nutrition, health and food look to us as a knowledgeable resource on sugar and rely on the integrity of our information to shape dietary advice, health programs, recipe formulations and more.

Supporting scientific research
Throughout our history we’ve embraced scientific research and innovation to learn as much as possible about sugar, diet and health. We transparently support new research that helps us better understand food, nutrition and the role sugar plays in our evolving eating habits.

Using a voice that’s grounded in science
To be a source of credible, transparent scientific information and make sure our materials and communications are grounded in the latest scientific research, we’re always reviewing new and existing research, reviews and position statements.

Advocating for evidence-based policies
We work to ensure policies are grounded in strong science, and we actively support policies that are. We participate in this process by providing public comments on proposed rules and regulations and sharing information with federal agencies about the science of sugar and health, and the multifaceted role of sugar in nutrient-dense foods and an overall balanced diet.

Supporting our proud industry
We tell the story of sugar, its people and the rich history of our proud industry. We share resources for our members to use in their communities and provide them with updates about the latest issues facing sugar.
REAL SUGAR COMES FROM SUGAR BEETS AND SUGAR CANE PLANTS

All green plants make sugar through photosynthesis, the process plants use to transform the sun’s energy into food. Of all plant types, sugar beets and sugar cane have the greatest quantities of sugar, or sucrose, which is why they make the most efficient choices from which to extract sugar. The boxes and bags of sugar we purchase at stores contain real sugar from sugar beet and sugar cane plants.

OUR MEMBERS

Together with our members, we work to tell sugar’s story, particularly where it comes from and how it plays a vital role in so many foods and beverages that are part of nutritious, balanced and (not to be forgotten) enjoyable diets. Our goal is to cut through the confusion with facts and help people confidently understand the role of sugar in the diet and enjoy nature’s oldest sweetener.

Learn more at sugar.org

@MoreToSugar

Contact us at Sugar@Sugar.org